Boundary conditions#
See also Boundary conditions.
Like the variable initialisation, boundary conditions can be set for
each variable in individual sections, with default values in a section
[All]. Boundary conditions are specified for each variable, being
applied to variable itself during initialisation, and the
time-derivatives at each timestep. They are a combination of a basic
boundary condition, and optional modifiers.
When finding the boundary condition for a variable var on a boundary
region, the options are checked in order from most to least specific:
Section
var,bndry_+ region name. Depending on the mesh file, regions of the grid are given labels. Currently these arecore,sol,pf,lower_targetandupper_targetwhich are intended for tokamak edge simulations. Hence the variables checked arebndry_core,bndry_pfetc.Section
var,bndry_+ boundary side. These names arexin,xout,yupandydown.Section
var, variablebndry_allThe same settings again except in section
All.
The default setting for everything is therefore bndry_all in the
All section.
Boundary conditions are given names, with optional arguments in brackets. Currently implemented boundary conditions are:
dirichlet- Set to zerodirichlet(<number>)- Set to some number e.g.dirichlet(1)sets the boundary to \(1.0\)neumann- Zero gradientrobin- A combination of zero-gradient and zero-value \(a f + b{{\frac{\partial f}{\partial x}}} = g\) where the syntax isrobin(a, b, g).constgradient- Constant gradient across boundaryzerolaplace- Laplacian = 0, decaying solution (X boundaries only)zerolaplace2- Laplacian = 0, using coefficients from the Laplacian inversion and Delp2 operator.constlaplace- Laplacian = const, decaying solution (X boundaries only)
The zero- or constant-Laplacian boundary conditions works as follows:
which when Fourier transformed in \(z\) becomes:
which has the solution
Assuming that the solution should decay away from the domain, on the inner \(x\) boundary \(B = 0\), and on the outer boundary \(A = 0\).
Boundary modifiers change the behaviour of boundary conditions, and more than one modifier can be used. Currently the following are available:
relax- Relaxing boundaries. Evolve the variable towards the given boundary condition at a given ratewidth- Modifies the width of the region over which the boundary condition is appliedfromFieldAligned- Transform the variable from toroidal to field aligned coordinates to apply the boundary condition (and transform back afterwards). Provides a way to apply parallel boundary conditions in a field aligned way, see Parallel boundary conditions.toFieldAligned- Transform the variable from field aligned to toroidal coordinates to apply the boundary condition (and transform back afterwards). Could be used to apply radial boundary conditions to a variable defined on a field aligned grid. Should probably never be useful.
These are described in the following subsections.
Boundary conditions for non-orthogonal grids#
If non-orthogonal grids are used (meaning that the x- and y-directions are not orthogonal,
so g12 != 0.), then corner cells may be required. The boundary conditions are applied
in corner cells[#disablecorners]_ by applying the y-boundary condition using x-boundary
values. This requires that x-boundary conditions are applied before y-boundary conditions.
The ordering is taken care of by the methods described in this section, but also needs to
be respected by any custom boundary conditions in user code (e.g. sheath boundary
conditions). Note that the iterators returned by the BoutMesh methods
iterateBndryLowerY, iterateBndryLowerInnerY, iterateBndryLowerOuterY,
iterateBndryUpperY, iterateBndryUpperInnerY, and iterateBndryUpperOuterY
do include the corner cells at the domain boundary corners.
Parallel boundary conditions#
Unless using slab geometry (with ParallelTransformIdentity, see
Parallel Transforms), some special handling is needed to
apply parallel boundary conditions. The details depend on the parallel
derivative scheme being used, see below. The default bndry_yup and
bndry_ydown settings would apply boundary conditions in the
poloidal, rather than parallel direction. As the poloidal direction
generally has a coarse resolution, that is not sufficient to resolve
perpendicular gradients, this would result in large numerical
inaccuracies in the boundary conditions.
Shifted metric boundary conditions#
When using the ShiftedMetric implementation of
ParallelTransform (by setting mesh:paralleltransform =
shifted, see Shifted metric), the recommended method is
to apply boundary conditions directly to the yup and ydown
parallel slices. This can be done by setting bndry_par_yup and
bndry_par_ydown, or bndry_par_all to set both at once. The
possible values are parallel_dirichlet_o1, parallel_dirichlet_o2,
parallel_dirichlet_o3, parallel_neumann_o1, parallel_neumann_o2
and parallel_neumann_o3. The stencils used are the same as for the
standard boundary conditions without the parallel_ prefix, but are
applied directly to parallel slices. The boundary condition can only
be applied after the parallel slices are calculated, which is usually
done during a call to Mesh::communicate(), so the
applyBoundary() method must be called explicitly (when boundary
conditions are applied automatically to evolving variables, they
cannot set these parallel boundary conditions). For maximum
efficiency, set bndry_yup and bndry_ydown to none to skip
using any boundary condition to set the unused boundary cells of the
base variable.
For example, for an evolving variable f, put a section in the
BOUT.inp input file like
[f]
bndry_xin = dirichlet
bndry_xout = dirichlet
bndry_par_all = parallel_neumann_o2
bndry_ydown = none
bndry_yup = none
and in the PhysicsModel::rhs() function, before taking any
derivatives of f, call
mesh->communicate(f);
f.applyBoundary();
The bndry_par_* options only provide a subset of boundary
conditions. If others are required, they can be used with a different,
slightly less optimised method. The modifier fromFieldAligned()
applies a boundary condition by first transforming the variable to a
globally field aligned grid, then applying the boundary condition,
then transforming back to the toroidal grid. When this method is used,
the boundary conditions must be applied before communicating, so that
the parallel slices are calculated using the boundary cells of the
base variable (for variables that have been added to the time solver,
this will automatically be the case). For example, the settings in
BOUT.inp for a Robin parallel boundary condition could be
[f]
bndry_xin = dirichlet
bndry_xout = dirichlet
bndry_yup = fromFieldAligned(robin(1, -1, 0))
bndry_ydown = fromFieldAligned(robin(1, 1, 0))
Aligned transform boundary conditions#
When using the ‘aligned transform’ method for parallel derivatives (see Aligned transform), the way to apply parallel boundary conditions depends on how the method was implemented.
For the ‘implicit transform’ version where the transformations to and
from the field aligned grid are done within each parallel derivative
or interpolation operator, the parallel boundary conditions must be
applied to the base variable, so they must be applied using the
fromFieldAligned() modifier, as described in the previous section
(Shifted metric boundary conditions).
For the optimised method with separate objects for the field aligned
versions of variables, it would be correct to apply boundary
conditions using the fromFieldAligned() modifier before
calculating the field aligned versions, but would add extra
interpolations. Therefore the recommended way to apply parallel
boundary conditions is to apply them directly to the field aligned
versions of variables. Since the objects for the field aligned
versions are not added to the time solver, it is necessary to load
boundary conditions explicitly from the BOUT.inp input file during
PhysicsModel::init(), for example by calling:
f_aligned.setBoundary("f_aligned")
where the argument to setBoundary() specifies the name of the
section in BOUT.inp from which boundary conditions will be read.
Then the boundary conditions must be applied explicitly after the
field aligned object has been calculated in PhysicsModel::rhs(),
for example:
f_aligned = fromFieldAligned(f);
f_aligned.applyBoundary();
The boundary condition should be applied directly to the array in
f_aligned (not to parallel slices, which are not created for this
scheme), so uses the ‘standard’ bndry_yup/bndry_ydown. Radial
boundary points should never be used from the aligned object, so its
x-boundaries should be set to none, and parallel boundary points
should never be used from the base variable, so its y-boundaries
should be set to none. The input sections for f and
f_aligned might look like
[f]
bndry_xin = dirichlet
bndry_xout = dirichlet
bndry_yup = none
bndry_ydown = none
[f_aligned]
bndry_xin = none
bndry_xout = none
bndry_yup = free_o3
bndry_ydown = free_o3
FCI boundary conditions#
When using the FCI method (FCI method), parallel boundary
conditions must be applied to the parallel slices using
bndry_par_yup and bndry_par_ydown, or bndry_par_all to set both
together. It is suggested, at least if there are
boundaries in the y-direction of the grid, to set bndry_yup = none
and bndry_down = none to skip unnecessary operations on y-boundary
cells of the base variable. For example, for an evolving variable
f, put a section in the BOUT.inp input file like
[f]
bndry_xin = dirichlet
bndry_xout = dirichlet
bndry_par_all = parallel_dirichlet_o2
bndry_ydown = none
bndry_yup = none
One should not that the parallel boundary conditions have to be applied after communication, while the perpendicular ones before:
f.applyBoundary();
mesh->communicate(f);
f.applyParallelBoundary("parallel_neumann_o2");
Note that during grid generation care has to be taken to ensure that there are no “short” connection lengths. Otherwise it can happen that for a point on a slice, both yup() and ydown() are boundary cells, and interpolation into the boundary can only use the single point on the given cell.
Relaxing boundaries#
All boundaries can be modified to be “relaxing” which are a combination of zero-gradient time-derivative, and whatever boundary condition they are applied to. The idea is that this prevents sharp discontinuities at boundaries during transients, whilst maintaining the desired boundary condition on longer time-scales. In some cases this can improve the numerical stability and timestep.
For example, relax(dirichlet) will make a field \(f\) at point
\(i\) in the boundary follow a point \(i-1\) in the domain:
where \(\tau\) is a time-scale for the boundary (currently set to 0.1, but will be a global option). When the time-derivatives are slow close to the boundary, the boundary relaxes to the desired condition (Dirichlet in this case), but when the time-derivatives are large then the boundary approaches Neumann to reduce discontinuities.
By default, the relaxation rate is set to \(10\) (i.e. a time-scale
of \(\tau=0.1\)). To change this, give the rate as the second
argument e.g. relax(dirichlet, 2) would relax to a Dirichlet
boundary condition at a rate of \(2\).
Changing the width of boundaries#
To change the width of a boundary region, the width modifier changes
the width of a boundary region before applying the boundary condition,
then changes the width back afterwards. To use, specify the boundary
condition and the width, for example
bndry_core = width( neumann , 4 )
would apply a Neumann boundary condition on the innermost 4 cells in the core, rather than the usual 2. When combining with other boundary modifiers, this should be applied first e.g.
bndry_sol = width( relax( dirichlet ), 3)
would relax the last 3 cells towards zero, whereas
bndry_sol = relax( width( dirichlet, 3) )
would only apply to the usual 2, since relax didn’t use the updated width.
Limitations:
Because it modifies then restores a globally-used BoundaryRegion, this code is not thread safe.
Boundary conditions can’t be applied across processors, and no checks are done that the width asked for fits within a single processor.
Examples#
This example is taken from the UEDGE benchmark test (in
examples/uedge-benchmark):
[All]
bndry_all = neumann # Default for all variables, boundaries
[Ni]
bndry_target = neumann
bndry_core = relax(dirichlet(1.)) # 1e13 cm^-3 on core boundary
bndry_all = relax(dirichlet(0.1)) # 1e12 cm^-3 on other boundaries
[Vi]
bndry_ydown = relax(dirichlet(-1.41648)) # -3.095e4/Vi_x
bndry_yup = relax(dirichlet( 1.41648))
The variable Ni (density) is set to a Neumann boundary condition on
the targets (yup and ydown), relaxes towards \(1\) on the core
boundary, and relaxes to \(0.1\) on all other boundaries. Note that
the bndry_target = neumann needs to be in the Ni section: If we
just had
[All]
bndry_all = neumann # Default for all variables, boundaries
[Ni]
bndry_core = relax(dirichlet(1.)) # 1e13 cm^-3 on core boundary
bndry_all = relax(dirichlet(0.1)) # 1e12 cm^-3 on other boundaries
then the “target” boundary condition for Ni would first search in
the [Ni] section for bndry_target, then for bndry_all in the
[Ni] section. This is set to relax(dirichlet(0.1)), not the
Neumann condition desired.
Boundary regions#
The boundary condition code needs ways to loop over the boundary regions, without needing to know the details of the mesh.
At the moment two mechanisms are provided: A RangeIterator over upper and lower Y boundaries, and a vector of BoundaryRegion objects.
// Boundary region iteration
virtual const RangeIterator iterateBndryLowerY() const = 0;
virtual const RangeIterator iterateBndryUpperY() const = 0;
bool hasBndryLowerY();
bool hasBndryUpperY();
bool BoundaryOnCell; // NB: DOESN'T REALLY BELONG HERE
The RangeIterator class is an iterator which allows looping over a
set of indices. For example, in src/solver/solver.cxx to loop over
the upper Y boundary of a 2D variable var:
for(RangeIterator xi = mesh->iterateBndryUpperY(); !xi.isDone(); xi++) {
...
}
The BoundaryRegion class is defined in
include/boundary_region.hxx
Y-Boundaries#
The sheath boundaries are often implemented in the physics model.
Previously of they where implemented using a RangeIterator:
class yboundary_example_legacy {
public:
yboundary_example_legacy(Options* opt, const Field3D& N, const Field3D& V)
: N(N), V(V) {
Options& options = *opt;
lower_y = options["lower_y"].doc("Boundary on lower y?").withDefault<bool>(lower_y);
upper_y = options["upper_y"].doc("Boundary on upper y?").withDefault<bool>(upper_y);
}
void rhs() {
BoutReal totalFlux = 0;
if (lower_y) {
for (RangeIterator r = mesh->iterateBndryLowerY(); !r.isDone(); r++) {
for (int jz = 0; jz < mesh->LocalNz; jz++) {
// Calculate flux through surface [normalised m^-2 s^-1],
// should be positive since V < 0.0
BoutReal flux =
-0.5 * (N(r.ind, mesh->ystart, jz) + N(r.ind, mesh->ystart - 1, jz)) * 0.5
* (V(r.ind, mesh->ystart, jz) + V(r.ind, mesh->ystart - 1, jz));
totalFlux += flux;
}
}
}
if (upper_y) {
for (RangeIterator r = mesh->iterateBndryUpperY(); !r.isDone(); r++) {
for (int jz = 0; jz < mesh->LocalNz; jz++) {
// Calculate flux through surface [normalised m^-2 s^-1],
// should be positive since V < 0.0
BoutReal flux = -0.5 * (N(r.ind, mesh->yend, jz) + N(r.ind, mesh->yend + 1, jz))
* 0.5
* (V(r.ind, mesh->yend, jz) + V(r.ind, mesh->yend + 1, jz));
totalFlux += flux;
}
}
}
}
private:
bool lower_y{true};
bool upper_y{true};
const Field3D& N;
const Field3D& V;
}
This can be replaced using the YBoundary class, which not only simplifies the
code, but also allows to have the same code working with non-field-aligned
geometries, as flux coordinate independent (FCI) method:
#include <bout/yboundary_regions.hxx>
class yboundary_example {
public:
yboundary_example(Options* opt, const Field3D& N, const Field3D& V) : N(N), V(V) {
// Set what kind of yboundaries you want to include
yboundary.init(opt);
}
void rhs() {
BoutReal totalFlux = 0;
yboundary.iter_pnts([&](auto& pnt) {
BoutReal flux = pnt.interpolate_sheath_o2(N) * pnt.interpolate_sheath_o2(V);
});
}
private:
YBoundary ybounday;
const Field3D& N;
const Field3D& V;
};
There are several member functions of pnt. pnt is of type
BoundaryRegionParIterBase and BoundaryRegionIter, and both should provide
the same interface. If they don’t that is a bug, as the above code is a
template, that gets instantiated for both types, and thus requires both
classes to provide the same interface, one for FCI-like boundaries and one for
field aligned boundaries.
Here is a short summary of some members of pnt, where f is a :
Function |
Description |
|---|---|
|
Returns the value at the last point in the domain |
|
Returns the value at the first point in the domain |
|
Returns the value at the second to last point in the domain, if it is valid. NB: this point may not be valid. |
|
Returns the value at the boundary, assuming the bounday value has been set |
|
Returns the value at the boundary, extrapolating from the bulk, first order |
|
Returns the value at the boundary, extrapolating from the bulk, second order |
|
Extrapolate into the boundary from the bulk, first or second order |
|
Extrapolate the gradient into the boundary, first or second order |
|
Apply dirichlet boundary conditions with value |
|
Applies a gradient of |
|
Extrapolate into the boundary using only monotonic decreasing values.
|
|
The direction of the boundary. |
Boundary regions#
Different regions of the boundary such as “core”, “sol” etc. are
labelled by the Mesh class (i.e. BoutMesh), which implements a
member function defined in mesh.hxx:
// Boundary regions
virtual vector<BoundaryRegion*> getBoundaries() = 0;
This returns a vector of pointers to BoundaryRegion objects, each of
which describes a boundary region with a label, a BndryLoc
location (i.e. inner x, outer x, lower y, upper y or all), and
iterator functions for looping over the points. This class is defined
in boundary_region.hxx:
/// Describes a region of the boundary, and a means of iterating over it
class BoundaryRegion {
public:
BoundaryRegion();
BoundaryRegion(const string &name, int xd, int yd);
virtual ~BoundaryRegion();
string label; // Label for this boundary region
BndryLoc location; // Which side of the domain is it on?
int x,y; // Indices of the point in the boundary
int bx, by; // Direction of the boundary [x+dx][y+dy] is going outwards
virtual void first() = 0;
virtual void next() = 0; // Loop over every element from inside out (in X or
Y first)
virtual void nextX() = 0; // Just loop over X
virtual void nextY() = 0; // Just loop over Y
virtual bool isDone() = 0; // Returns true if outside domain. Can use this
with nested nextX, nextY
};
Example: To loop over all points in BoundaryRegion *bndry , use
for(bndry->first(); !bndry->isDone(); bndry->next()) {
...
}
Inside the loop, bndry->x and bndry->y are the indices of the
point, whilst bndry->bx and bndry->by are unit vectors out of
the domain. The loop is over all the points from the domain outwards
i.e. the point [bndry->x - bndry->bx][bndry->y - bndry->by] will
always be defined.
Sometimes it’s useful to be able to loop over just one direction along
the boundary. To do this, it is possible to use nextX() or
nextY() rather than next(). It is also possible to loop over
both dimensions using:
for(bndry->first(); !bndry->isDone(); bndry->nextX())
for(; !bndry->isDone(); bndry->nextY()) {
...
}
Boundary operations#
On each boundary, conditions must be specified for each variable. The
different conditions are imposed by BoundaryOp objects. These set
the values in the boundary region such that they obey e.g. Dirichlet
or Neumann conditions. The BoundaryOp class is defined in
boundary_op.hxx:
/// An operation on a boundary
class BoundaryOp {
public:
BoundaryOp() {bndry = NULL;}
BoundaryOp(BoundaryRegion *region)
// Note: All methods must implement clone, except for modifiers (see below)
virtual BoundaryOp* clone(BoundaryRegion *region, const list<string> &args);
/// Apply a boundary condition on field f
virtual void apply(Field2D &f) = 0;
virtual void apply(Field3D &f) = 0;
virtual void apply(Vector2D &f);
virtual void apply(Vector3D &f);
/// Apply a boundary condition on ddt(f)
virtual void apply_ddt(Field2D &f);
virtual void apply_ddt(Field3D &f);
virtual void apply_ddt(Vector2D &f);
virtual void apply_ddt(Vector3D &f);
BoundaryRegion *bndry;
};
(where the implementations have been removed for clarity). Which has a
pointer to a BoundaryRegion object specifying which region this
boundary is operating on.
Boundary conditions need to be imposed on the initial conditions (after
PhysicsModel::init()), and on the time-derivatives (after
PhysicsModel::rhs()). The apply() functions are therefore called
during initialisation and given the evolving variables, whilst the
apply_ddt functions are passed the time-derivatives.
To implement a boundary operation, as a minimum the apply(Field2D),
apply(Field2D) and clone() need to be implemented: By default
the apply(Vector) will call the apply(Field) functions on each
component individually, and the apply_ddt() functions just call the
apply() functions.
Example: Neumann boundary conditions are defined in
boundary_standard.hxx:
/// Neumann (zero-gradient) boundary condition
class BoundaryNeumann : public BoundaryOp {
public:
BoundaryNeumann() {}
BoundaryNeumann(BoundaryRegion *region):BoundaryOp(region) { }
BoundaryOp* clone(BoundaryRegion *region, const list<string> &args);
void apply(Field2D &f);
void apply(Field3D &f);
};
and implemented in boundary_standard.cxx
void BoundaryNeumann::apply(Field2D &f) {
// Loop over all elements and set equal to the next point in
for(bndry->first(); !bndry->isDone(); bndry->next())
f[bndry->x][bndry->y] = f[bndry->x - bndry->bx][bndry->y - bndry->by];
}
void BoundaryNeumann::apply(Field3D &f) {
for(bndry->first(); !bndry->isDone(); bndry->next())
for(int z=0;z<mesh->LocalNz;z++)
f[bndry->x][bndry->y][z] = f[bndry->x - bndry->bx][bndry->y -
bndry->by][z];
}
This is all that’s needed in this case since there’s no difference between applying Neumann conditions to a variable and to its time-derivative, and Neumann conditions for vectors are just Neumann conditions on each vector component.
To create a boundary condition, we need to give it a boundary region to operate over:
BoundaryRegion *bndry = ...
BoundaryOp op = new BoundaryOp(bndry);
The clone function is used to create boundary operations given a
single object as a template in BoundaryFactory. This can take
additional arguments as a vector of strings - see explanation in
Boundary factory.
Boundary modifiers#
To create more complicated boundary conditions from simple ones (such
as Neumann conditions above), boundary operations can be modified by
wrapping them up in a BoundaryModifier object, defined in
boundary_op.hxx:
class BoundaryModifier : public BoundaryOp {
public:
virtual BoundaryOp* clone(BoundaryOp *op, const list<string> &args) = 0;
protected:
BoundaryOp *op;
};
Since BoundaryModifier inherits from BoundaryOp, modified boundary
operations are just a different boundary operation and can be treated
the same (Decorator pattern). Boundary modifiers could also be nested
inside each other to create even more complicated boundary
operations. Note that the clone function is different to the
BoundaryOp one: instead of a BoundaryRegion to operate on,
modifiers are passed a BoundaryOp to modify.
Currently the only modifier is BoundaryRelax, defined in
boundary_standard.hxx:
/// Convert a boundary condition to a relaxing one
class BoundaryRelax : public BoundaryModifier {
public:
BoundaryRelax(BoutReal rate) {r = fabs(rate);}
BoundaryOp* clone(BoundaryOp *op, const list<string> &args);
void apply(Field2D &f);
void apply(Field3D &f);
void apply_ddt(Field2D &f);
void apply_ddt(Field3D &f);
private:
BoundaryRelax() {} // Must be initialised with a rate
BoutReal r;
};
Boundary factory#
The boundary factory creates new boundary operations from input strings,
for example turning “relax(dirichlet)” into a relaxing Dirichlet
boundary operation on a given region. It is defined in
boundary_factory.hxx as a Singleton, so to get a pointer to the
boundary factory use
BoundaryFactory *bfact = BoundaryFactory::getInstance();
and to delete this singleton, free memory and clean-up at the end use:
BoundaryFactory::cleanup();
Because users should be able to add new boundary conditions during
PhysicsModel::init(), boundary conditions are not hard-wired into
BoundaryFactory. Instead, boundary conditions must be registered
with the factory, passing an instance which can later be cloned. This
is done in bout++.cxx for the standard boundary conditions:
BoundaryFactory* bndry = BoundaryFactory::getInstance();
bndry->add(new BoundaryDirichlet(), "dirichlet");
...
bndry->addMod(new BoundaryRelax(10.), "relax");
where the add function adds BoundaryOp objects, whereas addMod
adds BoundaryModifier objects. Note: The objects passed to
BoundaryFactory will be deleted when cleanup() is called.
When a boundary operation is added, it is given a name such as
“dirichlet”, and similarly for the modifiers (“relax” above). These
labels and object pointers are stored internally in BoundaryFactory
in maps defined in boundary_factory.hxx:
// Database of available boundary conditions and modifiers
map<string, BoundaryOp*> opmap;
map<string, BoundaryModifier*> modmap;
These are then used by BoundaryFactory::create():
/// Create a boundary operation object
BoundaryOp* create(const string &name, BoundaryRegion *region);
BoundaryOp* create(const char* name, BoundaryRegion *region);
to turn a string such as “relax(dirichlet)” and a BoundaryRegion
pointer into a BoundaryOp object. These functions are implemented in
boundary_factory.cxx, starting around line 42. The parsing is done
recursively by matching the input string to one of:
modifier(<expression>, arg1, ...)modifier(<expression>)operation(arg1, ...)operation
the <expression> variable is then resolved into a BoundaryOp
object by calling create(<expression>, region).
When an operator or modifier is found, it is created from the pointer
stored in the opmap or modmap maps using the clone method,
passing a list<string> reference containing any arguments. It’s up
to the operation implementation to ensure that the correct number of
arguments are passed, and to parse them into floats or other types.
Example: The Dirichlet boundary condition can take an optional
argument to change the value the boundary’s set to. In
boundary_standard.cxx:
BoundaryOp* BoundaryDirichlet::clone(BoundaryRegion *region, const list<string>
&args) {
if(!args.empty()) {
// First argument should be a value
stringstream ss;
ss << args.front();
BoutReal val;
ss >> val;
return new BoundaryDirichlet(region, val);
}
return new BoundaryDirichlet(region);
}
If no arguments are passed i.e. the string was “dirichlet” or
“dirichlet()” then the args list is empty, and the default value
(0.0) is used. If one or more arguments is used then the first
argument is parsed into a BoutReal type and used to create a new
BoundaryDirichlet object. If more arguments are passed then these
are just ignored; probably a warning should be printed.
To set boundary conditions on a field, FieldData methods are defined
in field_data.hxx:
// Boundary conditions
void setBoundary(const string &name); ///< Set the boundary conditions
void setBoundary(const string ®ion, BoundaryOp *op); ///< Manually set
virtual void applyBoundary() {}
virtual void applyTDerivBoundary() {};
protected:
vector<BoundaryOp*> bndry_op; // Boundary conditions
The FieldData::setBoundary() method is implemented in
field_data.cxx. It first gets a vector of pointers to
BoundaryRegions from the mesh, then loops over these calling
BoundaryFactory::createFromOptions() for each one and adding the
resulting boundary operator to the FieldData::bndry_op vector.